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Abstract The Schrödinger equation with a Lennard–Jones potential is solved by using
a procedure that treats in a rigorous way the irregular singularities at the origin and
at infinity. Global solutions are obtained thanks to the computation of the connection
factors between Floquet and Thomé solutions. The energies of the bound states result
as zeros of a function defined by a convergent series whose successive terms are cal-
culated by means of recurrence relations. The procedure gives also the wave functions
expressed either as a linear combination of two Laurent expansions, at moderate dis-
tances, or as an asymptotic expansion, near the singular points. A table of the critical
intensities of the potential, for which a new bound state (of zero energy) appears, is
also given.
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1 Introduction

The interaction between two atoms is frequently represented by means of a Lennard–
Jones potential,
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alone or with addition of some corrections. In this expression m is the reduced mass
of the system of two atoms, re is the equilibrium distance (minimum of V (r)) and
λ is a dimensionless parameter accounting for the intensity of the interaction. Both
re and λ are empirically adjusted for each particular kind of interacting atoms. Other
classical interatomic potentials, like the Morse, Rydberg or Buckingham ones, can be
simulated, as shown by Lim [1], by one of the Lennard–Jones type.

Given a diatomic system and assumed a certain potential to represent the interac-
tion, one is interested, from a theoretical point of view, mainly on the determination
of its spectrum of energies, to be compared with the experimentally observed bound
states. Nevertheless, in many cases, one needs to know also the corresponding wave
functions in order to compute the expected values of quantities that may be obtained in
the experiment. A large variety of algebraic methods are discussed in the monographs
by Fernández and Castro [2] and by Fernández [3]. References to later developments
can be found in recently published papers [4–7]. Numerical methods have been devel-
oped, among others, by Simos and collaborators [8–11]. An extensive bibliography
concerning those methods can be found in Sect. 2 of a recent paper [12]. Except for
a few familiar potentials, for which the differential equation can be solved exactly
[13], those methods provide only with approximate values of the energies and wave
functions. This may be sufficient in most of cases. However, due to the strong singu-
larity at the origin of the Schrödinger equation with a Lennard–Jones potential, those
approximate methods cannot represent faithfully the behaviour of the wave function
in the neighbourhood of the origin. This fact, besides of being unsatisfactory from a
mathematical point of view, may constitute a serious inconvenient for the computation
of the expected values of certain operators.

The purpose of this paper is to call the attention of users of the Lennard–Jones
potential towards a method of solution of the Schrödinger equation that is able to give
the correct behaviour of the wave function in the neighbourhood of the origin and the
infinity, the two singular points of the differential equation. The method is exact, free of
approximations, although errors due to the computational procedure are unavoidable.
But these errors can be reduced by increasing the number of digits carried along the
calculations.

We present, in the next section, fundamental sets of solutions of the Schrödinger
equation that serve as a basis to express the physical solution. The requirement of
a regular behaviour of this solution at the singular points establishes a condition, in
terms of the connection factors, to be fulfilled by the energies of the bound states. The
procedure to determine the connection factors is explained in Sect. 3. The energies
of the bound states in a potential of intensity 0 ≤ λ ≤ 100 are shown in Fig. 1.
Expressions of the corresponding wave functions are given in Sect. 4. As λ increases,
new bound states appear. We denote as critical those values of λ for which a state of
zero energy exists. In Sect. 5, a method is suggested to find those critical intensities,
which are reported in Table 5. Section 6 contains some pertinent comments. Finally,
we recall, in an Appendix, a procedure to solve the nontrivial problem of finding the
Floquet solutions.
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Fig. 1 Energies of bound states in the Lennard–Jones potential. The graph shows the energies of the lowest
states of angular momentum l = 0, 1, 2, 3, 4, and the first excited states with l = 0, 1, 2, for a varying
intensity of the potential in the range 0 ≤ λ ≤ 100. The curves corrresponding to the lowest states with
l = 5, 6, 7, intersect those shown of the first excited states and have been omitted for the sake of clarity of
the figure

2 Solutions of the Schrödinger equation

For a given energy E and angular momentum l, the Schrödinger equation for the
reduced radial wave function, R(r), of a particle of mass m in the potential V (r),
given in Eq. (1), reads

− h̄2

2m

(
d2 R(r)

dr2 − l(l + 1)

r2 R(r)

)
+ V (r) R(r) = E R(r). (2)

As usual, we will express the solutions of this differential equation in terms of dimen-
sionless radial variable, z, and energy parameter, ε, defined by

z ≡ r

re
, ε ≡ 2mr2

e

h̄2 E . (3)

For the radial wave function in terms of the new variable we will use

w(z) ≡ R(r). (4)

Then, the Schrödinger equation becomes

− z2 d2w(z)

dz2 +
(
λ z−10 − 2λ z−4 + l(l + 1) − ε z2

)
w(z) = 0. (5)

This differential equation presents two irregular singular points: one of rank 5 at the
origin, an another of rank 1 at infinity. The physical solution must be regular at both
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singular points. To express this solution, we find convenient to consider three different
fundamental systems of solutions.

2.1 Floquet solutions

Except for certain particular values of the parameters λ and ε, that we exclude from this
discussion, there are two independent Floquet or multiplicative solutions expressed
as Laurent power series of the form

wi = zνi

∞∑
n=−∞

cn,i zn, being
∞∑

n=−∞
|cn,i |2 < ∞, i = 1, 2. (6)

The indices νi are not uniquely defined. They admit addition of any integer (with
an adequate relabeling of the coefficients). In the general case, the indices νi and the
coefficients cn,i may be complex. The requirement that wi (z) be a solution of (5) gives
the recurrence relation

ε cn−2,i +[(n+νi )(n−1+νi )−l(l+1)] cn,i +2λ cn+4,i −λ cn+10,i =0, (7)

The solution of this difference equation is not trivial. It can be treated as a nonlinear
eigenvalue problem. In Appendix A we show an implementation of the Newton method
to determine the indices νi and the coefficients cn,i .

2.2 Thomé solutions for large values of z

There are two other independent solutions characterized by their behaviour for z → ∞,
namely

w j (z) ∼ exp
(
α j z

) ∞∑
m=0

am, j z−m, a0, j �= 0, j = 3, 4. (8)

It can be easily checked, by taking

α j = √−ε (9)

and coefficients am, j given by (omitting the second subindex, j)

a0 = 1, 2α m am = [m(m−1)−l(l+1)] am−1+2λ am−5−λ am−11, (10)

that the right hand side of Eq. (8) is a solution of the differential equation (5). In fact,
it is a formal solution, as the series is an asymptotic one that does not converge in
general. The two values of the subindex j in Eq. (8) correspond to the two possible
values of the right hand side of Eq. (9). In the case of negative energies, we adopt the
convention
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α3 = −√−ε, α4 = +√−ε. (11)

Accordingly, w3(z) is physically acceptable, as it vanishes at infinity, whereas w4(z)
diverges and, therefore, should be eliminated from the physical solution. In the case
(not to be considered in this paper) of positive energies, both w3(z) and w4(z) are
oscillating solutions and correspond to incoming and outgoing waves.

2.3 Thomé solutions near the origin

In the neighbourhood of the origin, the role analogous to that of w3 and w4 at infinity
is played by two other solutions, w5 and w6, such that, for z → 0,

wk(z) ∼ exp
(
βk z−5/5

)
zρk

∞∑
m=0

bm,k zm, b0,k �= 0, k = 5, 6. (12)

Substitution of these expressions in Eq. (5) gives for the coefficients in the exponents

βk = √
λ, ρk = 3, (13)

and for the coefficients in the series (omitting the second subindex, k)

2β m bm = 2λ bm−1 + [(m − 3)(m − 2) − l(l + 1)] bm−5 + ε bm−7, (14)

a recurrence relation that allows one to obtain the bn,k by starting with

b0,k = 1. (15)

The two solutions correspond to the two possible values of the right hand side of the
first of Eqs. (13). By convention we take

β5 = −√
λ, β6 = +√

λ. (16)

Then, w5 is acceptable, from the physical point of view, whereas w6 should be dis-
carded.

2.4 The physical solution

As the solutionsw1 andw2 of the differential equation constitute a fundamental system,
any solution can be written as a linear combination of them. In particular, the physical
solution would be

wphys(z) = A1 w1(z) + A2 w2(z), (17)

with constants A1 and A2, to be determined, such that wphys(z) becomes regular at
the origin and at infinity. To impose this condition we need to know the behaviour of
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w1 and w2 at the singular points. In other words, we need to calculate the connection
factors T defined by

wi (z) ∼ Ti,3 w3(z) + Ti,4 w4(z), for z → ∞, i = 1, 2, (18)

wi (z) ∼ Ti,5 w5(z) + Ti,6 w6(z), for z → 0, i = 1, 2. (19)

In terms of them, the behaviour of the physical solution in the neighbourhood of the
singular points would be

wphys(z) ∼ (A1 T1,3 + A2 T2,3) w3(z) + (A1 T1,4 + A2 T2,4) w4(z), for z → ∞,

wphys(z) ∼ (A1 T1,5 + A2 T2,5) w5(z) + (A1 T1,6 + A2 T2,6) w6(z), for z → 0.

The regularity of the physical solution at the singular points is guaranteed if A1 and
A2 are chosen in such a way that

A1 T1,4 + A2 T2,4 = 0 and A1 T1,6 + A2 T2,6 = 0, (20)

which is possible if and only if

T1,4 T2,6 − T2,4 T1,6 = 0. (21)

For given values of the parameters of the potential, the left hand side of this equation
is a function of ε whose zeros correspond to the values of the energies of the bound
states. Equation (21) is, therefore, the quantization condition. Solving it requires to
know the connection factors. We present in the next section our procedure to determine
them.

3 The connection factors

Let us design by W[ f, g] the Wronskian of two functions f and g,

W[ f, g](z) = f (z)
dg(z)

dz
− d f (z)

dz
g(z). (22)

Then, from Eqs. (18) and (19), one obtains immediately

Ti,3 = W[wi , w4]
W[w3, w4] , Ti,4 = W[wi , w3]

W[w4, w3] , i = 1, 2, (23)

Ti,5 = W[wi , w6]
W[w5, w6] , Ti,6 = W[wi , w5]

W[w6, w5] , i = 1, 2. (24)

All Wronskians in these equations are independent of z. Those in the denominators
can be calculated directly to obtain

W[w3, w4] = −W[w4, w3] = 2α4 a0,3 a0,4 = 2
√−ε, (25)

W[w5, w6] = −W[w6, w5] = −2β6 b0,5 b0,6 = −2
√

λ. (26)
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The calculation of the numerators is not so easy. In a former paper [14] we suggested
a procedure that has been used to find the bound states in a spiked harmonic oscillator
[15]. For convenience of the reader, we recall here the procedure, adapted to the present
problem.

We consider firstly the Wronskians of each one of the Floquet solutions with the
two Tomé solutions at infinity, W[wi , w j ] (i = 1, 2, j = 3, 4). Let us introduce the
auxiliary functions

ui, j = exp
(−α j z/2

)
wi , u j = exp

(−α j z/2
)

w j . (27)

Obviously,

W[ui, j , u j ] = exp
(−α j z

) W[wi , w j ]. (28)

Both sides of this equation obey the first order differential equation

y′ = −α j y. (29)

A direct computation of the left hand side of Eq. (28), by using the definitions (27)
and the expansions (6) and (8), gives the doubly infinite series

W[ui, j , u j ] ∼
∞∑

n=−∞
γ

(i, j)
n zn+νi , (30)

whose coefficients

γ
(i, j)
n =

∞∑
m=0

am, j
(
α j cn+m,i − (n + 2m + 1 + νi ) cn+m+1,i

)
(31)

are solution of the first order difference equation

(n + 1 + νi ) γ
(i, j)
n+1 + α j γ

(i, j)
n = 0. (32)

An expansion of the right hand side of Eq. (28), analogous to that in (30), can be
obtained by making use of the so-called Heaviside’s exponential series [16]

exp(t) ∼
∞∑

−∞

tn+δ

Γ (n + 1 + δ)
, | arg(t)| < π, δ arbitrary. (33)

By taking t = −α j z and choosing δ = νi , one gets an expansion,

exp(−α j z) ∼
∞∑

−∞

(−α j )
n+νi

Γ (n + 1 + νi )
zn+νi , (34)
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in series of the same powers of z as in (30) with coefficients obeying the same first
order difference equation,

(n + 1 + νi )
(−α j )

n+1+νi

Γ (n + 2 + νi )
+ α j

(−α j )
n+νi

Γ (n + 1 + νi )
= 0. (35)

Both solutions {γ (i, j)
n } and {(−α j )

n+νi /Γ (n+1+νi )} of the difference equation must
be related by a multiplicative constant that, in view of Eq. (28), shold be W[wi , w j ].
Therefore,

W[wi , w j ] = Γ (n + 1 + νi )

(−α j )n+νi
γ

(i, j)
n , (36)

an expression that, together with Eq. (25), would allow one to calculate the connection
factors given by Eq. (23). Nevertheless, the validity of Eq. (36) is subordinate to the
fulfilment of the condition | arg(−α j z)| < π , necessary for the validity of Eq. (34).
Such condition is satisfied in the case j = 3, as, for z ∈ [0,+∞), arg(−α3 z) = 0.
There is no difficulty in computing Ti,4 by substituting, in the second of Eqs. (23),

W[wi , w3] = Γ (n + 1 + νi )

(−α3)n+νi
γ (i,3)

n . (37)

In the case j = 4, instead, the above mentioned condition is not satisfied and Eq. (36)
is not valid for z ∈ [0,+∞). In fact, the positive real semiaxis is a Stokes ray for Ti,3,
that should be taken as the average

Ti,3 = 1

2
(T +

i,3 + T −
i,3) (38)

of its values in the sectors separated by the ray. Equivalently, one may define

W[wi , w4] = 1

2

(W[wi , w4]+ + W[wi , w4]−
)
, (39)

an average of the Wronskians for z slightly above and below the positive real semiaxis.
The result is

W[wi , w4] = (−1)n cos(νiπ)
Γ (n + 1 + νi )

(α4)n+νi
γ (i,4)

n . i = 1, 2 (40)

This equation provides with the needed value of the numerator in the first of Eqs. (23).
The procedure to calculate the Wronskians, W[wi , wk], (i = 1, 2, k = 5, 6) of

each one of the Floquet solutions with the two Thomé solutions at the origin is anal-
ogous to that just described, with the unavoidable differences due to the fact that the
singularity at the origin is of rank five, whereas it was of rank one at infinity. The
auxiliary functions are now
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vi,k = exp
(
−βk z−5/10

)
wi , vk = exp

(
−βk z−5/10

)
wk . (41)

Then,

W[vi,k, vk] = exp
(
−βk z−5/5

)
W[wi , wk]. (42)

For the left hand side we have the doubly infinite series

W[vi,k, vk] ∼
∞∑

n=−∞
γ (i,k)

n zn+νi +ρk , (43)

with coefficients

γ (i,k)
n =

∞∑
m=0

bm,k
(−βk cn−m+6,i +(−n+2m−1−νi +ρk) cn−m+1,i

)
, (44)

which obey the fifth order difference equation

(n − 5 + νi + ρk) γ
(i,k)
n−5 − βk γ (i,k)

n = 0. (45)

Five independent solutions of this difference equation are constituted by the coeffi-
cients of the five Heaviside’s exponential series

exp
(
−βk z−5/5

)
∼

∞∑
n=−∞

(−βk z−5/5
)n+δ

(i,k)
L

Γ (n + 1 + δ
(i,k)
L )

, L = 0, 1, . . . , 4, (46)

with

δ
(i,k)
L = (−νi − ρk + L)/5. (47)

Then, analogously to Eqs. (37) and (40), one has

W[wi , w5] =
4∑

L=0

Γ (n + 1 + δ
(i,5)
L )

(−β5/5)n+δ
(i,5)
L

γ
(i,5)
−5n−L , (48)

W[wi , w6] = (−1)n
4∑

L=0

cos(δ(i,6)
L π)

Γ (n + 1 + δ
(i,6)
L )

(β6/5)n+δ
(i,6)
L

γ
(i,6)
−5n−L . (49)

Now it is immediate to calculate the connection factors Ti,5 and Ti,6 by means of
Eq. (24).
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4 Bound states

By using the above described procedure, we have determined the values of ε which are
solution of Eq. (21) for different intensities of the potential in the range 0 < λ < 100
and for five values of the angular momentum, l = 0, 1, . . . , 4. The results are shown
graphically in Fig. 1.

Besides the energies of the bound states, our procedure gives also their wave func-
tions. For the values of ε satisfying Eq. (21), A1 and A2 can be determined, save for
a common arbitrary multiplicative constant, by using any one of Eqs. (20). To fix the
arbitrary constant, we may impose, for instance, that

A1 T1,3 + A2 T2,3 = 1. (50)

Then

A1 = T2,4

T1,3 T2,4 − T2,3 T1,4
, A2 = − T1,4

T1,3 T2,4 − T2,3 T1,4
, (51)

and, in view of Eqs. (17) and (6), the wave function of the bound state becomes

wphys(z) = N
(

A1 zν1

∞∑
n=−∞

cn,1 zn + A2 zν2

∞∑
n=−∞

cn,2 zn

)
, (52)

N being a normalization constant such that
∞∫

0

dz |wphys(z)|2 = r−1
e . (53)

For large values of z, the series in Eq. (52) converge slowly and are not convenient
for the computation of wphys(z). In this case, it is preferable to use the asymptotic
expansion

wphys(z) ∼ N exp (α3 z)
∞∑

m=0

am,3 z−m, z → ∞, (54)

stemming from

wphys(z) ∼ N (
(A1 T1,3 + A2 T2,3) w3(z) + (A1 T1,4 + A2 T2,4) w4(z)

)
, (55)

bearing in mind Eqs. (20) and (50) and the expansion in Eq. (8). For the same reason,
one should use the asymptotic expansion

wphys(z) ∼ N (
A1 T1,5+ A2 T2,5

)
exp

(
β5 z−5/5

) ∞∑
m=0

bm,5 zm, z → 0, (56)

in the neighbourhood of the origin.
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Table 1 Parameters of the
ground state in a Lennard–Jones
potential of intensity λ = 40

Angular
momentum

l = 0

Energy ε = −11.909183

ν1 0.5 − 3.31231657 i

T1,3 −0.10275762E + 03 − 0.20083284E + 03 i

T1,4 −0.12151177E−01 + 0.62172400E − 02 i

T1,5 −0.13871649E + 04 − 0.26958725E + 04 i

T1,6 0.49335027E − 03 − 0.25242634E − 03 i

A1 −0.10095465E − 02 + 0.19730906E − 02 i

Table 2 Parameters of the first
excited state in a Lennard–Jones
potential of intensity λ = 40

Angular
momentum

l = 1

Energy ε = −10.465279

ν1 0.5 − 2.99607877 i

T1,3 −0.56554657E + 02 − 0.13235260E + 03i

T1,4 −0.21626362E−01 + 0.92410081E−02 i

T1,5 −0.11876972E + 04 − 0.27655908E + 04 i

T1,6 0.52897583E − 03 − 0.22603293E − 03 i

A1 −0.13650231E − 02 + 0.31945090E − 02 i

We have obtained, by way of illustration, the parameters of the four existing bound
states in a potential of intensity λ = 40. Tables 1, 2, 3 and 4 show the values of
the energy, the indices νi of the Floquet solutions, the connection factors, and the
coefficients Ai to be substituted in Eq. (52), for each one of those bound states. For the
determination of the indices νi and the coefficients cn,i of the Floquet solutions, we
used the Newton iteration method, to be recalled in the Appendix. We benefited from
the subroutines bandec and banbks [17, pp. 45–46] to obtain the initial values,
and from ludcmp and lubksb [17, pp. 38–39] in the iteration process. Double
precision Fortran was used in the computation. The iteration was stopped when the
correction in the absolute value of νi became less than 10−13. Usually, two or three
iterations were enough. Simultaneously, the coefficients cn,i , with −360 ≤ n ≤ 360,
were obtained. (Due to the fact that Eq. (7) relates coefficients with subindexes of
the same parity, the ambiguity in the definition of νi , mentioned in Sect. 2.1, allows
one to cancel all coefficients cn,i with odd n.) According to the condition (63), to be
justified in the Appendix, the indices of the Floquet solutions either are real or, being
complex, have opposite imaginary parts. In this case, thanks to the ambiguity in the
definition of the νi , one may choose them to be complex conjugate to each other. Then,
w2, T2, j , T2,k and A2 are the complex conjugate of, respectively, w1, T1, j , T1,k and
A1. Consequently, wphys(z) becomes real.

A word of caution about the computation of the wave function is in order. Our
double precision calculations have revealed that Eq. (52), with the series truncated to∑200

n=−200, allows one to obtain values of wphys(z) with eight correct significant digits
whenever roughly 0.7 < z < 3.0, whereas the asymptotic expansions in Eqs. (54) and
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Table 3 Parameters of the
second excited state in a
Lennard–Jones potential of
intensity λ = 40

Angular
momentum

l = 2

Energy ε = −7.629685

ν1 0.5 − 2.26050463 i

T1,3 −0.75165112E + 01 − 0.49967087E + 02 i

T1,4 −0.82325669E − 01 + 0.12384188E − 01 i

T1,5 −0.40737562E + 03 − 0.28987415E + 04 i

T1,6 0.62067701E − 03 − 0.93367973E − 04 i

A1 −0.14719741E − 02 + 0.97851589E − 02 i

Table 4 Parameters of the third
excited state in a Lennard–Jones
potential of intensity λ = 40

Angular
momentum

l = 3

Energy ε = −3.530328

ν1 0.5 − 0.59466296 i

T1,3 0.42589066E + 01 − 0.28071593E + 01 i

T1,4 −0.88803914E + 00 − 0.13472965E + 01 i

T1,5 0.35206173E + 04 + 0.56914086E + 03 i

T1,6 0.51239569E − 03 + 0.77738566E − 03 i

A1 0.81844039E − 01 + 0.53945596E − 01 i

(56) become useful for z > 4.5 and z < 0.4, respectively. Therefore, double precision
is not sufficient for a computation of the values of wphys(z) in the whole interval
0 < z < ∞. Quadruple precision calculations, instead, provide with satisfactory
results.

5 Critical values of the intensity

It may be interesting to know the values of λ for which a new bound state (of zero
energy) appears. Our method of solution of the Schrödinger equation is also applicable
in this case, but in a much simpler form. For zero energy, the singular point at infinity
is a regular one and the basic Floquet solutions of the general case are replaced by
Frobenius solutions whose coefficients can be obtained trivially. The procedure in this
case is the same used to obtain the scattering length [18]. In fact, as it is well known,
the presence of a new bound state of zero energy is revealed by a pole in the scattering
length. We report, in Table 5, some critical values of the intensity λ for different values
of the angular momentum l.

6 Final comments

We have shown the applicability of our method for obtaining global solutions of the
Schrödinger equation in the case of bound states in a (12,6) Lennard–Jones poten-
tial. The method can be similarly applied to any other Lennard–Jones-type potential,
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Table 5 Lowest values of the of intensity λ of the Lennard–Jones potential Eq. (1) for which a new bound
state of angular momentum l appears

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

7.04314 13.29573 21.48500 31.60949 43.66864 57.66218

46.61703 61.64985 78.58395 97.43067 118.19665 140.88604

121.28583 145.10984 170.82095 198.43005 227.94507 259.37186

231.08863 263.70031 298.19340 334.57660 372.85712 413.04084

376.02780 417.42555 460.70191 505.86378 552.91734 601.86799

whatever exponents in the attractive and repulsive terms. The physical solution results
as a determined linear combination of the two Floquet solutions and its asymptotic
expansion at the singular points is proportional to the respective regular Thomé solu-
tions.

Given a value of the intensity λ of the potential, a study of the indices νi of the
Floquet solutions reveals that they are real for small energy. They may be taken in the
interval 0 ≤ νi ≤ 1, with ν2 = 1 − ν1. As the energy increases, ν1 increases and ν2
decreases, both approaching the value 1/2 for a certain energy. As ν1 = ν2 = 1/2, only
one multiplicative solution exists: any other independent solution of the Schrödinger
equation contains logarithmic terms. Increasing the energy makes both ν1 and ν2 to
become complex, with fixed common real part equal to 1/2 and opposite imaginary
parts increasing with the energy. The physical wave function, however, may be taken
real by adjusting the arbitrary global phase.

Special mention deserve the critical values of the intensity discussed in Sect. 5.
Our Table 5 allows one to know immediately the number of states, of each angular
momentum, bounded by a potential of given intensity.

Acknowledgments Financial support from Departamento de Ciencia, Tecnología y Universidad del
Gobierno de Aragón (Project E24/1) and Ministerio de Ciencia e Innovación (Project MTM2009-11154)
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7 Appendix

We have mentioned in Sect. 2.1 that the computation of the indices and coefficients
of the Floquet solutions can be treated as a nonlinear eigenvalue problem, whose
solution we are going to consider in this Appendix. Along it we will omit, for brevity,
the subindex i in νi and cn,i . The condition in Eq. (6) implies that

lim
n→±∞ |cn| = 0, (57)

which allows one to truncate the infinite set of equations (7) and to restrict the label
n to the interval −M ≤ n ≤ N , both M and N being positive integers large enough
to guarantee that the solution of the truncated problem does not deviate significantly
from that of the original infinite one. Algorithms to solve finite-order problems have
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been discussed by Ruhe [19]. Here we recall the Newton iteration method suggested
by Naundorf [20]. The procedure consists in moving from an approximate solution,
{ν(i), c(i)

n }, to another one, {ν(i+1), c(i+1)
n }, by solving the system of equations

ε c(i+1)
n−2 +

[(
n+ν(i)

) (
n − 1+ν(i)

)
−l(l + 1)

]
c(i+1)

n +2λ c(i+1)
n+4 −λ c(i+1)

n+10

+
(

2n−1+2ν(i)
)

c(i)
n

(
ν(i+1)−ν(i)

)
= 0, n = −M, . . . ,−1, 0, 1, . . . , N ,

(58)
N∑

n=−M

c(i)
n

∗
c(i+1)

n = 1, (59)

that results, by linearization [20], from (7) and from the truncated normalization con-
dition

N∑
n=−M

|cn|2 = 1.

Obviously, the values of c(i)
m with m < −M or m > N entering in some of Eqs. (58)

should be taken equal to zero, in accordance with the truncation done. The iteration
process is stopped when the difference between consecutive solutions, {ν(i), c(i)

n } and
{ν(i+1), c(i+1)

n } is satisfactory. The resulting values of ν and cn may serve as initial
values for a new iteration process, with larger values of M and N , to check the stability
of the solution.

Of course, the Newton method just described needs initial values {ν(0), c(0)
n } not

far from the true solution. The two different values of ν can be obtained from the two
eigenvalues

exp(2iπνi ), i = 1, 2, (60)

of the circuit matrix C [21] for the singular point at z = 0. The entries of that matrix can
be computed by numerically integrating Eq. (5) on the unit circle, from z = exp(0) to
z = exp(2iπ), for two independent sets of initial values. If we consider two solutions,
wa(z) and wb(z), obeying, for instance, the conditions

wa(e0) = 1, w′
a(e0) = 0,

wb(e
0) = 0, w′

b(e
0) = 1,

then

C11 = wa(e2iπ ), C12 = wb(e
2iπ ),

C21 = w′
a(e2iπ ), C22 = w′

b(e
2iπ ),
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and

ν = 1

2iπ
ln

[
1

2

(
C11 + C22 ±

√
(C11 − C22)

2 + 4C12C21

)]
. (61)

The two signs in front of the square root produce two different values for ν, unless the
parameters λ and ε in Eq. (5) be such that (C11 − C22)

2 +4C12C21 = 0, in which case
only one multiplicative solution appears, any other independent solution containing
logarithmic terms. The ambiguity in the real part of ν due to the multivaluedness of
the logarithm in the right hand side of (61) reflects the fact already mentioned that the
indices ν are not uniquely defined. Notice that

exp(2iπν1) exp(2iπν2) = det C = W[wa, wb] = 1 (62)

and, therefore,

ν1 + ν2 = 0 (mod 1). (63)

This may serve as a test for the integration of Eq. (5) on the unit circle.
Although Eq. (61) is exact, the Cmn are obtained by numerical integration of a

differential equation and are not sufficiently precise. The resulting values of ν may
only be considered as starting values, ν(0), for the Newton iteration process. As starting
coefficients c(0)

n one may use the solutions of the homogeneous system

ε c(0)
n−2 +

[
(n + ν(0))(n − 1 + ν(0)) − l(l + 1)

]
c(0)

n + 2λ c(0)
n+4 − λ c(0)

n+10 = 0,

n = −M, . . . ,−1, 0, 1, . . . , N , (64)

with the already mentioned truncated normalization condition

N∑
n=−M

|c(0)
n |2 = 1. (65)

References

1. T.C. Lim, Connection among classical interatomic potential functions. J. Math. Chem. 36, 261–269
(2004)

2. F.M. Fernández, E.A. Castro, Algebraic Methods in Quantum Chemistry and Physics (CRC Press,
Boca Raton, 1996)

3. F.M. Fernández, Introduction to Perturbation Theory in Quantum Mechanics (CRC Press, Boca Raton,
2001)

4. K.J. Oyewumi, K.D. Sen, Exact solutions of the Schrödinger equation for the pseudoharmonic potential:
an application to some diatomic molecules. J. Math. Chem. 50, 1039–1050 (2012)

5. H. Akcay, R. Sever, Analytical solutions of Schrödinger equation for the diatomic molecular potentials
with any angular momentum. J. Math. Chem. 50, 1973–1987 (2012)

6. M. Hamzavi, S.M. Ikhdair, K.-E. Thylwe, Equivalence of the empirical shifted Deng–Fan oscillator
potential for diatomic molecules. J. Math. Chem. 51, 227–238 (2013)

123



1896 J Math Chem (2013) 51:1881–1896

7. K.J. Oyewumi, O.J. Oluwadare, K.D. Sen, O.A. Babalola, Bound state solutions of the Deng-Fan
molecular potential with the Pekeris type approximation using the Nikiforov–Uvarov (N–U) method.
J. Math. Chem. 51, 976–991 (2013)

8. T.E. Simos, J. Vigo-Aguiar, A symmetric high order method with minimal phase-lag for the numerical
solution of the Schrödinger equation. Int. J. Modern Phys. C 12, 1035–1042 (2001)

9. T.E. Simos, J. Vigo-Aguiar, An exponentially-fitted high order method for long-term integration of
periodic initial-value problems. Comput. Phys. Commun. 140, 358–365 (2001)

10. T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the
Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

11. J. Vigo-Aguiar, H. Ramos, Variable stepsize implementation of multistep methods for y′′ =
f (x, y, y′). J. Comput. Appl. Math. 192, 114–131 (2006)

12. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its
derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical
analysis. J. Math. Chem. 51, 194–226 (2013)

13. S. Flugge, Practical Quantum Mechanics (Springer, New York, 1974)
14. F.J. Gómez, J. Sesma, Connection factors in the Schrödinger equation with a polynomial potential.

J. Comput. Appl. Math. 207, 291–300 (2007)
15. F.J. Gómez, J. Sesma, Spiked oscillators: exact solution. J. Phys. A: Math. Theor. 43, 385302 (2010)
16. G.H. Hardy, Divergent Series (Clarendon Press, Oxford, 1949)
17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77 (Cam-

bridge University Press, Cambridge, 1992)
18. F.J. Gómez, J. Sesma, Scattering length for Lennard–Jones potentials. Eur. Phys. J. D 66, 6 (2012)
19. A. Ruhe, Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674–689 (1973)
20. F. Naundorf, Ein Verfahren zur Berechnung der charakteristischen Exponenten von linearen Differen-

tialgleichungen zweiter Ordnung mit zwei singulären Stelle. ZAMM 57, 47–49 (1977)
21. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations (Dover, Mineola, 2002)

123


	Exact solution of the Schrödinger equation with a Lennard--Jones potential
	Abstract
	1 Introduction
	2 Solutions of the Schrödinger equation
	2.1 Floquet solutions
	2.2 Thomé solutions for large values of z
	2.3 Thomé solutions near the origin
	2.4 The physical solution

	3 The connection factors
	4 Bound states
	5 Critical values of the intensity
	6 Final comments
	Acknowledgments
	7 Appendix
	References


